
Stochastic wave equations with
values in Riemannian manifolds
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1. Introduction

Because of their numerous applications in natural sciences the wave equa-
tions form a classical research �eld both in mathematics and physics. They
describe propagation of all kinds of waves in space or in some media. One
can well imagine acoustic waves (sound), propagation of light, electromagnetic
waves (radio), ocean waves, seismic waves (earthquake), ultrasonic waves (de-
tection of �aws in materials), vibrations of strings, airplane wings, membranes
or elastic bodies etc.

The development of modern theoretical physics has widely extended the
scope of applications of wave equations to �elds such as harmonic gauges in
general relativity, non-linear σ-models in particle systems, electro-vacuum Ein-
stein equations, the non-abelian gauge theories (which serve as a description of
elementary particle processes) or non-linear optics, see e.g. Misner [23], Forger
[12], Gu [17], Choquet-Bruhat & Christodoulou [7], Choquet-Bruhat & Segal
[8], Eardley & Moncrief [10], Ginibre & Velo [15], Glassey & Strauss [16]. In
all these models wave equations appear in a Riemannian geometry setting, the
so called geometric wave equations, where waves do not travel in an Euclidean
space but in a Riemannian manifold like a surface, a Lie group, a warp product
or a homogeneous space. These models pose interesting and challenging prob-
lems from the point of view of non-linear hyperbolic PDEs and thus belong to
one of the mainstreams in the current mathematical research with the aim to
justify or modify the physical theories. For example, the �eld theory deals with
maps between a Minkowski d+ 1-dimensional space-time manifold Σ and Rie-
mannian manifold M , see e.g. [14]. From the mathematical point of view, the
wave maps, i.e. the solutions of GWEs, are the maps between Σ and M that
are stationary points of the action functional A(u) =

∫ ∫
(|ux|2− |ut|2)/2 dxdt.

Therefore the wave maps could be viewed as semi-classical limits of �eld theories
and, in local coordinates, they satisfy the following non-linear wave equation

(1.1) ∂ttu
k = ∆uk + Γkij(u)∂αu

i∂αuj , u(0) = u0, ut(0) = v0.
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We intend to run this part of our project in parallel with general research on
deterministic theory of geometric wave equations. We will concentrate on the
study of stochastic perturbations of wave equations in Riemannian manifolds -
an unexplored area. This a continuation of our previous project that resulted
in a paper [3], as far as we are aware the only one on the subject, in which we
have suggested two natural formulations of the stochastic GWE, proved their
equivalence, as well as the existence and uniqueness of a strong global solution.
The results are valid for every target Riemannian manifold but only for the
(1 + 1) Minkowski space.

The aim of the current paper is to present results from [3] in a more acces-
sible way to specialists in Stochastic PDEs who are not specialist in di�erential
geometry. Hence special care is taken in logical introducing all necessary ge-
ometric background material. But we also provide di�erent and often clearer
proofs and statements than those presented in [3].

This work was partially supported by EPSRC Grant EP/E01822X/1 and
by by the GA�R grant No. 201/07/0237.

2. Necessary background on differential geometry

We assume that the reader is familiar with notions of a di�erentiable (and
riemannian) manifold, tangent space, vector �eld. From now we assume that
M is is a compact riemannian manifold. By TpM , p ∈ M , we will denote the
tangent space to M at p, and by π : TM → M we will denote the tangent
vector bundle. The space of all smooth vector �elds on M , i.e. sections of π,
will be denoted by X(M). The space of all smooth R-valued functions on M
will be denoted by F(M). If I ⊂ R is an open interval and γ : I → M is a
smooth map, then by ∂tγ(t) ∈ Tγ(t)M , or simply by γ′(t), we will denote the
tangent vector to γ at t ∈ I.

One should recall an alternative equivalent de�nition of a vector �eld,
namely a vector �eld on M is a smooth R-linear map X : F(M) → F(M)

such that

(D0) X(fg) = X(f)g + fX(g), for all f, g ∈ F(M).
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We will exchangeably use these two di�erent approaches to a vector �eld.
We will list here necessary de�nitions and theorems that we will later on

use in the paper.

De�nition 2.1. [26, De�nition 3.9] A connection on a smooth manifold M is

a function ∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY ∈ X(M) such that

(D1) for each Y ∈ X(M), the map X(M) 3 X 7→ ∇XY ∈ X(M) is F(M)-linear,

(D2) for each X ∈ X(M), the map X(M) 3 Y 7→ ∇XY ∈ X(M) is R-linear,

(D3) for all X,Y ∈ X(M) and f ∈ F(M), ∇X(fY ) = (Xf)Y + f∇XY .

∇XY is called the covariant derivative of Y with respect toX for the connection

∇.

As is explained in [26], the axiom (D1) in view of [26, Proposition 2.2], for
any Y ∈ X(M) and each p ∈M and each individual tangent vector u ∈ Tp(M),
a tangent vector ∇uY ∈ Tp(M) is well de�ned. To be precise, ∇uY = ∇XY (p),
where X ∈ X(M) satis�es X(p) = u.

Let us recall the following fundamental result due to Levi-Civita.

Theorem 2.1. [26, Theorem 3.11] If (M, g) is a riemannian manifold then

there exists a unique connection ∇ on M , called the Levi-Civita connection

such that for all X,Y, Z ∈ X(M),

(D4) [X,Y ] = ∇XY − ∇YX, (D5) X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉, where
〈Y, Z〉 : M 3 p 7→ gp(Y (p), Z(p)) ∈ R.

Let us also recall the following result about di�erentiating along a curve.
For a smooth map γ : I → M we will denote by X(γ) the space of all smooth
vector �elds on γ and if V ∈ X(M) then (Vγ)(t) = V (γ(t)), t ∈ I. By F(I) we
will denote the space C∞(I,R).

Proposition 2.1. [26, Proposition 3.18] or [20, Theorem 9.1] Assume that ∇
is the Levi-Civita connection on a riemannian manifoldM . If I ⊂ R is an open

interval and γ : I →M is a smooth map, then there exists a unique linear map
′ : X(γ)→ X(γ) such that

(i2) (hZ)′ = (dhdt )Z + hZ ′, for all h ∈ F(I), Z ∈ X(γ),
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(i3) (Vγ)′(t) = ∇∂tγ(t)(V ), t ∈ I for all V ∈ X(M).

Furthermore, (i4) d
dt 〈Z1, Z2〉 = 〈Z ′1, Z2〉+ 〈Z1, Z

′
2〉, for all Z1, Z2 ∈ X(γ).

We will denote Z ′(t) by ∇∂tγ(t)(Z)(t). In particular, if Z(t) = ∂tγ(t), t ∈ I,
is the velocity �eld of γ, then ∇∂tγ(t)(∂tγ)(t) is called the acceleration of the
curve γ at t ∈ I and will be denoted in this paper by Dt∂tγ(t). Please note
that the time variable will sometimes be denoted by s and also that the same
construction works for a space variable x.

Example 2.1 - The euclidean space M = Rd equipped with a trivial metric
tensor g is a riemannian manifold. For each p ∈ Rd, the tangent space TpRd

is naturally isometrically isomorphic to Rd. Hence a vector �eld on X on Rd

is simply a function X : Rd → Rd. A function ∇ : Rd × Rd → Rd de�ned by
(∇XY )(p) := (dpY )(X(p)) is the corresponding Levi-Civita connection and is
called the natural connection on Rd. In particular, the acceleration of a smooth
curve γ : I → Rd with respect to the natural connection on M = Rd satis�es

(2.1) ∇∂tγ(t)(∂tγ)(t) = ∂2
t γ(t) = γ̈(t), t ∈ I.

We have now the following fundamental geometric version of integration by
parts formula.

Corollary 2.1. If ϕ : J → R is a smooth function with compact support and

u : J →M is smmoth, then for every Z ∈ X(M),

−
∫
J

dϕ

dx
(x)〈∂xu(x), Z(u(x))〉 dx(2.2)

=

∫
J

ϕ(x)〈Dx∂xu(x), Z(u(x))〉 dx+

∫
J

ϕ(x)〈∂xu(x),∇∂xu(x)Z〉 dx,

where e.g. 〈Dx∂xu(x), Z(u(x))〉 = 〈Dx∂xu(x), Z(u(x))〉Tu(x)M .

Example 2.2 - Let us �x p, q ∈ M and consider a set Mp,q of all continuous
functions γ : [0, 1]→M such that γ(0) = p, γ(1) = q, γ is absolutely continuous
and E(γ) =

∫ 1

0
|∂tγ(t)|2 dt is �nite, where |∂tγ(t)|2 = gγ(t)(∂tγ(t), ∂tγ(t)), t ∈

[0, 1]. Then, it is known that Mp,q is a Hilbert manifold and that E is a
smooth map fromMp,q to R. Using the integration by parts formula (2.2) one
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can prove that if γ ∈ Mp,q is a stationary point of E, then Dt∂tu(t) = 0 for
all t ∈ (0, 1).

According to the celebrated Nash embedding Theorem, see [24], since M
is a riemannian manifold, there exist d ∈ N and an isometric embedding
i : M ↪→ Rd, where Rd = M is the euclidean space. Hence M can be identi�ed
with its image in Rd. In this case, i.e. when M is a riemannian submanifold
of Rd, one introduces the second fundamental form A of the submanifold M

of Rd in such a way that Ap : TpM × TpM → NpM , p ∈ M . Here Np is the
normal space to p ∈ M with respect to to the metric in Rd. In particular, for
each p ∈ M , Rd = TpM ⊕NpM . Then, see [26, p. 100], if X be a vector �eld
on M , p ∈ M and X̃ is a smooth Rd-valued extension of X to an Rd-open
neighbourhood V of p, then

(2.3) (dpX̃)(η) = ∇ηX ⊕Ap(X(p), η), η ∈ TpM,

where dqX̃ ∈ Hom(Rd,Rd) is the Fréchet derivative of X̃ : V → Rd at q ∈ V ,
∇ is the Levi-Civita connection on M .

Moreover, if γ : I →M is a smooth curve andX ∈ XM (γ), γ̄ = i◦γ : I →M

and X̄ := i∗(X) ∈ XM (γ̄) is de�ned by X̄(t) := (dγ(t)i)
(
X(γ(t)

)
, t ∈ I, then,

see [26, Proposition 4.8], for all t ∈ I,

∇̄∂tγ̄(t)X̄ = ∇∂tγ(t)X ⊕Aγ(t)(X(γ(t)), ∂tγ(t)),

X̄ ·(t) = X ′(t) +∇∂tγ(t)X ⊕Aγ(t)(X(γ(t)), ∂tγ(t)),(2.4)

where ′ : XM → XM and · : XM → XM are the linear maps whose existence is
guaranteed by Proposition 2.1 and ∇ is the natural connection on M = Rd as
in Example 2.1.

In particular, but see also [26, Corollary 4.8], by applying equality (2.1) and
Example 2.1 we infer that for any smooth curve γ : I →M , where I ⊂ R,

(2.5)

{
Dt∂tγ(t) = ∂ttγ(t)−Aγ(t)(∂tγ(t), ∂tγ(t)),

Aγ(t)(∂tγ(t), ∂tγ(t)) ⊥ ∂ttγ(t)−Aγ(t)(∂tγ(t), ∂tγ(t)),
t ∈ I.

Note the following fundamental consequence of the above properties.

(2.6) 〈∂ttγ(t)−Aγ(t)(∂tγ(t), ∂tγ(t)), ∂ttγ(t)〉 = |∂ttγ(t)−Aγ(t)(∂tγ(t))|2, t ∈ I,
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where | · | and 〈·, ·〉 are the norm and the inner product in Rd.
We �nish with the following result useful later on. By using a partition of

unity we can �nd a �nite system of vector �elds Z1, . . . , Zk on M such that

(2.7) ξ =

k∑
i=1

〈ξ, Zi(p)〉Zi(p), p ∈M, ξ ∈ TpM,

where 〈ξ, Zi(p)〉 = gp(ξ, Zi(p)) and, if M is isometrically embedded in Rd,
〈ξ, Zi(p)〉 = 〈ξ, Zi(p)〉Rd .

In the latter case let us denote the Euclidean components of the vector Zi
by Z1

i , . . . , Z
d
i , i.e. Zi =

∑d
j=1 Z

j
i ej , where (ej)

d
j=1 is the natural ONB of Rd.

Then we have the following simple but important consequence of (2.7).

Proposition 2.2. If the vector �elds Zi, i = 1, · · · , k satisfy (2.7) then

(2.8)
d∑
j=1

k∑
i=1

〈ξ,∇ξ(Zji Zi)〉ej = Ap(ξ, ξ), p ∈M, ξ ∈ TpM.

From properties of the Levi-Civita connection we get the following result.

Lemma 2.1. If the vector �elds Zi satisfy (2.7) then

(2.9)
k∑
i=1

〈η,∇ξZi〉Zi +

k∑
i=1

〈η, Zi〉∇ξZi = 0, η, ξ ∈ TpM, p ∈M.

Proof � Let us �rst show that for every J ∈ X(M)

(2.10) 0 =

k∑
i=1

〈J,∇ξZi〉Zi +

k∑
i=1

〈J, Zi〉∇ξZi, p ∈M, ξ ∈ TpM.

By (2.7) we have J(p) =
∑k
i=1〈J(p), Zi(p)〉Zi(p), p ∈ M . Hence by prop-

erties (D2), (D3) in [26, Def 3.9] we have

∇ξJ =

k∑
i=1

∇ξ(〈J, Zi〉Zi) =

k∑
i=1

ξ(〈J, Zi〉)Zi +

k∑
i=1

〈J, Zi〉∇ξZi.

By property (D5) in [26, Thm 3.11] we have for each i,

ξ(〈J, Zi〉) = 〈∇ξJ, Zi〉Zi + 〈J,∇ξZi〉Zi.

Since by (2.7) ∇ξJ is equal to
∑k
i=1〈∇ξJ, Zi〉Zi , the result follows.

The equality (2.9) follows from (2.10) by choosing J such that J(p) = η.
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Proof of Proposition 2.2� Let us next extend the vector �elds Zi to a small
Rd-open neighbourhood V of p ∈ M and denote the extensions by Z̃i. Then,(
ξ(Z1

i ), · · · , ξ(Zni )
)

=
(
ξ(Z̃1

i ), · · · , ξ(Z̃ni )
)

=
(
(dpZ̃

1
i )ξ, · · · , (dpZ̃ni )ξ

)
= (dpZ̃)ξ

and so by (2.3),

(2.11)
(
ξ(Z1

i ), · · · , ξ(Zni )
)

= ∇ξZi +Ap(ξ, Zi(p)), ξ ∈ TpM, p ∈M.

Let us denote A = (A1, . . . , An) and �x j ∈ {1, · · · , d}. Taking a scalar product
of both sides of (2.11) with (〈ξ, Zi(p)〉)ki=1, we obtain, in view of (2.9),

k∑
i=1

ξ(Zji )〈ξ, Zi〉+

k∑
i=1

Zji 〈ξ,∇ξZi〉 = Ajp(ξ, ξ).

On the other hand by (D3) in [26, Def 3.9], LHS of the above equality is equal
to
∑k
i=1〈ξ,∇ξ(Z

j
i Zi)〉. Thus, by multiplying the resulting equality by a vector

ej and then summing over j = 1, · · · , d we get identity (2.8) and so we conclude
the proof of Proposition 2.2.

3. The SWE on R1+1 space-time

In this section we assume that M is a compact riemannian manifold. We
consider the following one-dimensional stochastic wave equation

(3.1) Dt∂tu = Dx∂xu+ Yu(∂tu, ∂xu) Ẇ .

where Y is a �ber-preserving C1-class map from TM × TM to TM , where
TM ×TM is the cartesian product of the tangent vector bundle TM by itself.
We assume that (Ω,F , (Ft)t≥0,P) is a probability space, F = (Ft)t≥0 is a
�ltration on it such that F0 contains all P-negligible sets, and W = (W (t))t≥0

is a spatially homogeneous F-Wiener process on R whose a spectral measure µ
satis�es the following assumptions.

Notation 3.1. If O ⊂ Rd is an open set and k ∈ N then Hk(O,Rd) denotes

standard Sobolev space of order k. We put Hk = Hk+1(R;Rd) ⊕ Hk(R;Rd),
H := H1 and, for R > 0, HkR = Hk+1((−R,R);Rd) ⊕ Hk((−R,R);Rd) and

HR := H1
R. If K be a manifold and k ∈ N then a function f : R → K is
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said to belong to Hk
loc

(R,K) i� ψ(θ ◦ f) ∈ Hk(R) for all θ ∈ C∞(K,R) and

ψ ∈ C∞0 (R,R). We also equip Hk
loc

(R,K) with the topology induced by the

mappings Hk
loc

(R,K) 3 f 7→ θ ◦ f ∈ Hk(R), θ ∈ C∞(K,R), ψ ∈ C∞0 (R,R).

Let us denote by S = (St)t∈R the C0 group of bounded linear operators on the

space H0, generated by an operator G :=

[
0 I

∆ 0

]
with D(G) = H2. The

restriction of the S to any of the spaces Hk, k ∈ N is also a C0 group on

Hk. The semigroup S acts via well know formulae, see e.g. Section 4 in [27].

Moreover, S extends to a C0 group of linear continuous operators on the space

Hkloc, and

(3.2) ‖Stz‖HT−|t| ≤ e
|t|
2 ‖z‖HT , z ∈ Hloc.

Assumptions 3.1. The reproducing kernel Hilbert space Hµ of the law of

W (1) is contained in H1
loc

(R) and for each R > 0 there exists a constants

cR > 0, such that for every j ∈ {0, 1} and g ∈ Hj(R),

(3.3) ‖ξ 7→ g · ξ‖T2(Hµ,Hj(−R,R)) ≤ cR|g|Hj(−R,R).

For the deterministic version of our problem one can consult Shatah &
Struwe [27]. Contrary to the deterministic case, solutions to the stochastic
wave equation cannot be easily de�ned using local coordinates and so we sug-
gest two possible approaches to this issue. Firstly, we propose the following
de�nition of intrinsic solution which however is preceded by the following gen-
eral assumptions.

Assumptions 3.2. Functions u0, v0 are F0-measurable random variables

with values in H2
loc

(R,M) and H1
loc

(R, TM) respectively such that v0(x, ω) ∈
Tu0(x,ω)M for all ω ∈ Ω and x ∈ R.

De�nition 3.1. Assume that Assumptions 3.2 are satis�ed. A process u :

R+×R×Ω→M is called an intrinsic solution of problem (3.1) with initial

data (3.4), where

u(0, ·) = u0, ∂tu(t, ·)|t=0 = v0,(3.4)

provided the following six conditions are satis�ed.
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(i) u(t, x, ·) is Ft-measurable for every x ∈ R and every t ≥ 0,

(ii) u(·, ·, ω) belongs to C1(R+ × R;M) for every ω ∈ Ω,

(iii) R+ 3 t 7→ u(t, ·, ω) ∈ H2
loc

(R,M) is continuous for every ω ∈ Ω,

(iv) R+ 3 t 7→ u(t, ·, ω) ∈ H1
loc

(R,Rd) is continuously di�erentiable for every

ω ∈ Ω,

(v) u(0, x, ω) = u0(x, ω), ∂tu(0, x, ω) = v0(x, ω) for every x ∈ R, P-a.s.,

(vi) and for every vector �eld X on M , and every t ≥ 0 and R > 0, the

following equality holds in L2(−R,R), P almost surely

〈∂tu(t), X(u(t))〉Tu(t)M = 〈v0, X(u0)〉Tu(t)M +

∫ t

0

〈Dx∂xu(s), X(u(s))〉Tu(s)M ds

+

∫ t

0

〈∂tu(s),∇∂su(s)X〉Tu(s)M ds+

∫ t

0

〈X(u(s)), Yu(s)(∂su(s), ∂xu(s)) dW (s)〉Tu(s)M .

Remark 3.1 - In view of (2.5) the following are two equivalent di�erential equa-
tion formulations of the integral equation (3.5). We will not dwell upon this
equivalence in this paper.

(3.5) 〈Dt∂tu,X(u)〉TuM = 〈Dx∂xu,X(u)〉TuM + 〈Yu(∂tu, ∂xu) Ẇ ,X(u)〉TuM ,

for every vector �eld X on M .

(3.6)

{
∂t〈∂tu,X(u)〉TuM = 〈Dx∂xu,X(u)〉TuM + 〈∂tu,∇∂tuX〉TuM+

+ 〈Yu(∂tu, ∂xu) Ẇ ,X(u)〉TuM

for every vector �eld X on M .

Now we propose the following de�nition of an extrinsic solution.

De�nition 3.2. Assume that Assumptions 3.2 are satis�ed. A process u :

R+ × R × Ω → M is called an extrinsic solution to problem (3.1) with initial

data (3.4), provided the �ve conditions (i)-(v) from De�nition 3.1 are satis�ed

and instead of condition (vi) the following one holds
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(vii) for all t ≥ 0 and R > 0 the following equality holds in L2((−R,R),Rd),
P almost surely,

∂tu(t) = v0 +

∫ t

0

[
∂xxu(s)−Au(s)(∂xu(s), ∂xu(s)) +Au(s)(∂su(s), ∂su(s))

]
ds

+

∫ t

0

Yu(s)(∂su(s), ∂xu(s)) dW (s).(3.7)

Remark 3.2 - Let us observe that equation (3.7) is a mild form of the following
equation

(3.8) ∂ttu = ∂xxu−Au(ux, ux) +Au(ut, ut) + Yu(∂tu, ∂xu) Ẇ

We begin our exposition with the following result that shows that in fact our
two de�nitions of a solution are equivalent.

Theorem 3.1. Assume that the spatially homogeneous F-Wiener processW =

(W (t))t≥0 on R satisfying Assumption 3.1. Suppose also that M is a compact

submanifold of R as in De�nition 3.2. Assume that Assumptions 3.2 are satis-

�ed. Then a process u : R+ × R × Ω → M is an intrinsic solution to problem

(3.4) if and only if it is an extrinsic solution to the same problem.

The above result justi�es the use on a notion solution to problem (3.4).
Next we formulate the main result of this part of the paper.

Theorem 3.2. Assume that the vector bundles homomorphism Y : TM ×
TM → TM is of C1 class such that both Y and TY are uniformly of linear

growth on the �bers, i.e. there exists C > 0 such that for all p ∈M , ξ, η ∈ TpM
and ξi, ηi ∈ TpM , i = 1, 2,

|Yp(ξ, η)|TpM ≤ C(1 + |ξ|TpM + |η|TpM ),(3.9)

|d(p,ξ1,ξ2)Y (η, η1, η2)| ≤ C
[(

1 + |ξ1|+ |ξ2|
)
|η|+ |η1|+ |η2|

]
.(3.10)

Then there exists an F-adapted process u =
(
u(t)

)
t≥0

such that u is a

solution to problem (refequa1) with the initial data (3.4).

Moreover, suppose that u =
(
u(t)

)
t≥0

and ū =
(
ū(t)

)
t≥0

are two F-adapted
process such that for some R > T > 0 the following conditions are satis�ed,

P-almost surely,
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(•1) The paths of both u and ū are H2((−R,R);Rd)-valued continuous;

(•2) The paths of both u and ū are H1((−R,R);Rd)-valued continuously dif-

ferentiable;

(•3) Both u(t, x, ω) and ū(t, x, ω) belong to M for all x ∈ (−R,R), t ∈ [0, T ),

(•4) u(0, x, ω) = ū(0, x, ω) = u0(x, ω) for all x ∈ (−R,R),

(•5) ∂tu(0, x, ω) = v0(x, ω) for all x ∈ (−R,R),

(•6) Both u and ū satisfy the equation (3.7) in L2((−R,R);Rd) for all t ∈
[0, R).

Then ū(t, x, ω) = u(t, x, ω) for all x ∈ (−(R− t), R− t) and t ∈ [0, T ), P-almost

surely.

The following Lemma about energy inequalities, which can be seen as a
stochastic analogue of energy estimates for solutions of wave equations, for
solutions of linear wave equations with an additive noise plays a fundamental
rôle in our proofs.

Proposition 3.1. Assume that T > 0, k ∈ N and U is a Hilbert space. Let W

be a U -cylindrical F-Wiener process. Let f and g be progressively measurable

processes with values inHk(R;Rd) and L2(U,Hk(R;Rd)) respectively such that

(3.11)
∫ T

0

{
|f(s)|Hk(R;Rd) + ‖g(s)‖2L2(U,Hk(R;Rd))

}
ds <∞

almost surely. Let z0 : Ω → Hk be F0-measurable and let z = z(t), t ∈ [0, T ]

be an Hk-valued continuous process satisfying the following integral equation

(3.12) z(t) = Stz0 +

∫ t

0

St−s
(
0, f(s)

)
ds+

∫ t

0

St−s
(
0, g(s)

)
dW (s), t ∈ [0, T ].

Given λ ≥ 0 and x ∈ Rd, we de�ne the energy function e : [0, T ] ×Hk → R+

by, for z = (u, v) ∈ Hk,
(3.13)

e(t, z) =
1

2

{
λ|u|2L2(B(x,T−t)) +

k∑
l=0

[
|Dl+1

x u|2L2(B(x,T−t)) + |Dl
xv|2L2(B(x,T−t))

]}
.
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Assume that L : [0,∞) → R is a non-decreasing C2-class function and

de�ne the second energy function E : [0, T ]×Hk → R, by

E(t, z) = L(e(t, z)), z = (u, v) ∈ Hk.

and let a function V : [0, T ]×Hk → R be de�ned by, for (t, z) ∈ R×Hk,

V (t, z) = L′(e(t, z))
[
λ〈u, v〉L2(B(x,T−t)) + 〈v, f(t)〉Hk(B(x,T−t))

]
+

1

2
L′(e(t, z))‖g(t)‖2T2(Hµ,Hk(B(x,T−t))) +

1

2
L′′(e(t, z))|g(t)∗v|2Hµ .

Then E : [0, T ]×Hk → R is continuous function and for every t ∈ [0, T ],

E(t, z(t)) ≤ E(0, z0) +

∫ t

0

V (r, z(r)) dr

+

∫ t

0

L′(e(r, z(r)))〈v(r), g(r) dW (r)〉Hk(B(x,T−r)).(3.14)

Remark 3.3 - It can be shown that if an H1-valued process z = (u, v) satis�es
the integral equation (3.12) then the H2(R,Rd)-valued process u satis�es for
all t ≥ 0 in L2(R,Rd), P almost surely,

(3.15) ∂tu(t) = v0 +

∫ t

0

[
∂xxu(s) + f(s)

]
ds+

∫ t

0

g(s) dW (s).

And vice versa, if the H2(R,Rd)-valued process u satis�es (3.15), then the H1-
valued process z = (u, ∂tu) satis�es the integral equation (3.12). In particular,
if Assumptions 3.2 are satis�ed and process u : R+ × R× Ω→M satis�es the
�ve conditions (i)-(v) from De�nition 3.1 then it satis�es condition (vii) from
De�nition 3.2 i� a process z = (u, ∂tu) satis�es the following condition:

(viii) For all t ≥ 0 and R > 0 the following equality holds in L2((−R,R),Rd),
P almost surely,

z(t) = Stz0 +

∫ t

0

St−s
(
0,−Au(s)(∂xu(s), ∂xu(s)) +Au(s)(∂su(s), ∂su(s))

)
ds

+

∫ t

0

St−s
(
0, Yu(s)(∂su(s), ∂xu(s))

)
dW (s).(3.16)
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We will also need the following generalization of Itô Lemma, see [3, Lemma
6.5].

Lemma 3.1. Let U and K be separable Hilbert spaces, and let f and g be

progressively measurable processes with values in K and T2(U,K) respectively,

such that ∫ T

0

{
|f(s)|K + ‖g(s)‖2T2(U,K)

}
ds <∞ almost surely.

For some K-valued F0-measurable random variable ξ de�ne a process z by

z(t) = Stξ +

∫ t

0

St−sf(s) ds+

∫ t

0

St−sg(s) dW (s), t ∈ [0, T ],

where W is a cylindrical Wiener process on U , and (St)t≥0 is a C0-semigroup

on K with an in�nitesimal generator A. Let V be another separable Hilbert

space and let (Tt)t≥0 be a C0-semigroup on V with an in�nitesimal generator B.

Suppose that Q : K → V is a C2-smooth function such that Q[D(A)] ⊆ D(B)

and there exists a continuous function F : K → V such that

(3.17) Q′(z)Az = BQ(z) + F (z), z ∈ D(A).

Then, for all t ≥ 0,

Q(z(t)) = TtQ(ξ) +

∫ t

0

Tt−sQ
′(z(s))g(s) dW (s)

+

∫ t

0

Tt−s

[
Q′(z(s))f(s) + F (z(s)) +

1

2
trKQ

′′(z(s)) ◦ (g(s), g(s))
]
ds.

4. Elements of proofs

The basic idea of the proof of the main result comes from [18] and [1]. The
nonlinearities A and Y in the equation (3.8) are extended from their domains
(products of tangent bundles) to the ambient space, and thus we obtain a
classical SPDE in a Euclidean space for which existence of global solutions is
known. However our proof of the existence of the manifold valued solutions
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requires, that from the many extensions that can be constructed, we choose
those which satisfy certain �symmetry� properties.

Let us denote by TM and NM the tangent and the normal bundle respec-
tively, and denote by E the exponential function TRd 3 (p, ξ) 7→ p + ξ ∈ Rd

relative to the riemannian manifold Rd equipped with the standard Euclidean
metric. The following result about tubular neighbourhood of M can be found
in [26], see Proposition 7.26, p. 200.

Proposition 4.1. There exists an Rd-open neighbourhood O of M and an

NM -open neighbourhood V around the set {(p, 0) ∈ NM : p ∈ M} such

that the restriction of the exponential map E|V : V → O is a di�eomorphism.

Moreover, V can be chosen in such a way that (p, tξ) ∈ V whenever t ∈ [−1, 1]

and (p, ξ) ∈ V .

Remark 4.1 - In what follows, we will denote the di�eomorphism E|V : V → O

by E , unless there is a danger of ambiguity.
Denote by i : NM → NM the di�eomorphism (p, ξ) 7→ (p,−ξ) and de�ne

(4.1) h = E ◦ i ◦ E−1 : O → O.

The function h de�ned above is an involution on the normal neighbourhood O
of M and corresponds to multiplication by −1 in the �bers, having precisely
M for its �xed point set. The identi�cation of the manifold M as a �xed
point set of a smooth function enables to prove that solutions of heat equations
with initial values on the manifold remain thereon, see [18] for deterministic
heat equations in manifolds and [1] for stochastic heat equations in manifolds.
Employing a partition of unity argument we may assume that h : Rd → Rd is
such that properties (1)-(5) of Corollary 4.1 are valid on O. Therefore, it is
without loss of generality to assume that the function h is de�ned on the whole
Rd.

Corollary 4.1. The function h has the following properties: (i) h : O → O is

a di�eomorphism, (ii) h(h(q)) = q for every q ∈ O, (iii) if q ∈ O, then h(q) = q

if and only if q ∈ M , (iv) if p ∈ M , then h′(p)ξ = ξ, provided ξ ∈ TpM and

h′(p)ξ = −ξ, provided ξ ∈ NpM .
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Next we de�ne, for q ∈ Rd and a, b ∈ Rd,

Bq(a, b) = d2
qh(a, b), Aq(a, b) =

1

2
Bh(q)(h

′(q)a, h′(q)b).(4.2)

Let us recall that the second fundamental form A was introduced around
the formula (2.3). We will be studying problem (3.7) with A replaced by A.
The following result is essential for our paper.

Proposition 4.2. If p ∈M and q ∈ O, then

(4.3) Ap(ξ, η) =
1

2
Bp(a, b) = Ap(ξ, η), ξ, η ∈ TpM,

(4.4) Ah(q)(h
′(q)a, h′(q)b) = h′(q)Aq(a, b) +Bq(a, b), a, b ∈ Rd.

Proof � Let p ∈ M , ξ ∈ TpM and let X be a vector �eld on M de�ned
around p such that X(p) = ξ, and let X̃ be a smooth Rd-valued extension
of X to aln Rd-open neighbourhood V of p. De�ne next a smooth Rd-valued
function Y by Y (q) = h′(q)X̃(q), q ∈ V . Then by (iv) in Corollary 4.1, Y is
an extension of X, i.e. Y (q) = X(q) = X̃(q), q ∈ M ∩ V . Hence, for each
q ∈M ∩ V and η ∈ TqM , (dqY )(η) = (dqX̃)(η) and moreover by (2.3)

(dpY )(η) = ∇ηX +Ap(X(p), η) = ∇ηX +Ap(ξ, η), η ∈ TpM.

On the other hand, by (2.3) and Corollary 4.1, for η ∈ TpM ,

(dpY )(η) = Bp(ξ, η) + h′(p)(dpX̃)(η)

= Bp(ξ, η) + h′(p) [∇ηX +Ap(ξ, η)] = Bp(ξ, η) +∇ηX −Ap(ξ, η).

Thus, by Corollary 4.1, for η ∈ TpM ,

Ap(ξ, η) =
1

2
Bh(p)(h

′(p)ξ, h′(p)η) =
1

2
Bp(ξ, η) = Ap(ξ, η).

For the second part, we have by de�nition and by Corollary 4.1 that

Ah(q)(h
′(q)a, h′(q)b) =

1

2
Bh(h(q))(h

′(h(q))h′(q)a, h′(h(q))h′(q)b) =
1

2
Bq(a, b).
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On the other hand, by the Leibnitz formula2 applied to the equality h ◦ h = id

on O, from (ii) in Corollary 4.1 we infer that

Bh(q)(h
′(q)a, h′(q)b) = −h′(h(q))Bq(a, b).

Hence, since h′(q)h′(h(q)) = id, we infer that

h′(q)Aq(a, b) +Bq(a, b) = −1

2
h′(q)h′(h(q))Bq(a, b) +Bq(a, b) =

1

2
Bq(a, b)

what completes the proof.

To this end, let πp, p ∈ M be the orthogonal projection of Rd to TpM

and let us de�ne vij(p) = Ap(πpei, πpej) for i, j ∈ {1, . . . , n} and extend the
functions vij = vji smoothly to the whole Rd. The following result is just [3,
Lemma 10.1].

Lemma 4.1. Let γ : (a, b)→M , where (a, b) ⊂ R, be an H1-smooth curve on

M , and let X, Z be H1-smooth vector �elds along γ. Then, for a.a. x ∈ (a, b),

〈∂xX, ∂x[Aγ(Z,Z)]〉 =
∑
i,j

〈∂xX, ∂kvij(γ)∂xγ
kZiZj〉(4.5)

− 2
∑
i,j

〈X, ∂kvij(γ)∂xγ
k∂xZ

iZj〉.

Now we will shortly recall the construction of extensions of vector �elds on
M to vector �elds on O from [18], cf. [5]. To this end, let us de�ne a new
riemannian metric g on O by

(4.6) gq(a, b) = 〈a, b〉Rd + 〈h′(q)a, h′(q)b〉Rd , q ∈ O, a, b ∈ Rd.

Remark 4.2 - h : (O, g)→ (O, g) is an isometric di�eomorphism.

If q ∈ O then, by Proposition 4.1, there exists a unique (p, ξ) ∈ V such
that q = E(p, ξ). We will write p(q) = p for this dependence. Moreover, also
by Proposition 4.1, E(p, tξ) ∈ O for t ∈ [0, 1]. Hence we can de�ne the curve

2If E,F,G are Banach spaces and f : E → F , g : F → G are of twice di�eren-

tiable at resp. a ∈ E and f(a), then (d2a(g ◦ f))(x1, x2) = (d2
f(a)

g)
(
(daf)x1, (daf)x2

)
+

(df(a)g)
(
d2af(x1, x2)

)
, for all x1, x2 ∈ E.
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γq : [0, 1] 3 t 7→ E(p, tξ) ∈ O. If a ∈ Rd and (X(t))t∈[0,1], X(0) = a is the
parallel translation of a along γq in (O, g) then we denote by Pqa the endpoint
vector X(1).

Proposition 4.3. [3, Proposition 3.9] P : O → Lisom(Rn,Rn) is a smooth

function. Moreover, Pq = I for q ∈M and

h′(q)Pq = Ph(q)h
′(p(q)), q ∈ O.

Due to this setting, it is possible to extend conveniently various mappings
de�ned on the manifold M to its neighbourhood O, cf. [5].

For example, we have the following technical result whose proof can be
found in [3].

Proposition 4.4. If R : (TM)k → TM is a vector bundle homomorphism,

then there exists an extension R̃ of R the whole space Rd which satis�es, for

all q ∈ O and a1, . . . , ak ∈ Rd

R̃q(a1, . . . , ak) = PqRp(q)(πp(q)P
−1
q a1, . . . , πp(q)P

−1
q ak) ∈ Rd,(4.7)

R̃h(q)(h
′(q)a1, . . . , h

′(q)ak) = h′(q)R̃q(a1, . . . , ak),(4.8)

where for p ∈ M , πp is the orthogonal projection from Rd to TpM . Moreover,

if R is smooth then so is R̃.

5. Approximated Non-linearities

5.1. Existence of approximate solutions

Since we expect that the solutions of the equation (3.8) live on the manifold
M , we cannot expect them to belong to the Hilbert space H2(R)⊕H1(R), and,
accordingly with the PDE theory, they will take values rather in the Fréchet
spaceH2

loc
(R)⊕H1

loc
(R). To overcome the problem with Bochner and stochastic

integration which is not available in Fréchet spaces, we localize the problem by
a series of non-linear wave equations.

Let us �x T > 0, r > 2T and k ∈ N. Let ϕ = ϕr : R → R be a smooth
compactly supported function such that ϕ = 1 on (−r, r). Let us recall, see e.g.
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[22] that there exists a linear bounded operator E1 : H1(−1, 1)→ H1(R) such
that (i) Ekf = f almost everywhere on (−1, 1) whenever f ∈ H1(−1, 1), (ii)
E1f vanishes outside of (−2, 2) whenever f ∈ H1(−1, 1), (iii) E1f ∈ C1(R),
if f ∈ C1([−1, 1]) and (iv) there exists a unique extension of E1 to a bounded
linear operator from H0(−1, 1) to H0(R). Let, for r > 0 an operator E1

r :

Hj(−r, r)→ Hj(R), j = 0, 1 be de�ned following formula

(5.1) (E1
rf)(x) = {E1[f(r·)]}(x

r
), x ∈ R, f ∈ Hj(−r, r), j = 0, 1.

In a similar manner we de�ne extension operators E2
r .

Note that the tangent bundle TRd is isomorphic to Rd×Rd and the cartesian
product bundle TRd × TRd is isomorphic to Rd ×Rd ×Rd. Using the formula
(4.7) and Proposition 4.4 we can �nd an extension Y : Rd × Rd × Rd → Rd of
the original �ber bundle homomorphism Y : TM × TM → TM such that

(5.2) Yh(q)(h
′(q)a1, h

′(q)a2) = h′(q)Yq(a1, a2), q ∈ O, a1, a2 ∈ Rd.

Let us �x r > T > 0. We de�ne, with the notational convention that
z = (u, v) ∈ H, maps Fr = (0,Φr) : [0, T ]×H → H, Gr = (0,Γr) : [0, T ]×H →
T2(Hµ,H) andQr : H 3 z 7→ (ϕ·h(u), ϕ·h′(u)v) ∈ H by the following formulae,

Φrt (z) = E1
r−t[Au(v, v)−Au(ux, ux)], (Γrt (z))ξ = (E1

r−tYu(v, ux))ξ, ξ ∈ Hµ.

Next, we de�ne a map Fr,k : [0, T ]×H → H (and by analogous formula a map
Gr,k : [0, T ]×H → T2(Hµ,H)) by

Fr,kt (z) =


Frt (z), if |z|Hr−t ≤ k,(
2− 1

k |z|Hr−t
)
Frt (z), if k ≤ |z|Hr−t ≤ 2k,

0, if 2k ≤ |z|Hr−t.

We begin with the following result which follows directly from Corollary 4.1
parts (3) and (4) and the de�nitions of the functions Qr and ϕ.

Lemma 5.1. If z = (u, v) ∈ H is such that u(s) ∈ M and v(s) ∈ Tu(s)M for

|s| < r, then Qr(z) = z on (−r, r).

Lemma 5.2. Let k ∈ N. Then the functions Fr, Fr,k, G
r, Gr,k are continuous

and there exists a constant Cr,k such that for all t ∈ [0, T ] and z, w ∈ H

|Fr,kt (z)− Fr,kt (w)|H + ‖Gr,k
t (z)−Gr,k

t (w)‖T2(Hµ,H) ≤ Cr,k|z − w|Hr−t .
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The following result is a direct consequence of the above Lemma 5.2 and
e.g. Theorem 7.4 in [9]. We �x initial data u0, V0 as in Assumptions 3.2
and for each r > 0 de�ne H-valued F0-measurable random variable ξr by
ξr :=

(
E2
r (u0), E1

r (v0)
)
.

Corollary 5.1. There exists a unique H-valued continuous process zr,k =

(ur,k, vr,k) satisfying E
∫ T

0
|zr,k(t)|2H ds < ∞ and such that for all t ∈ [0, T ],

P-a.s.

(5.3) zr,k(t) = Stξr +

∫ t

0

St−sF
r,k
s (zr,k(s)) ds+

∫ t

0

St−sG
r,k
s (zr,k(s)) dW (s).

We will apply Lemma 3.1 to the process and the function zr,k and the
function Qr. Thus we need to check that the assumptions are satis�ed. We
begin with the question of regularity of Qr.

From the Sobolev embedding H1(R) ⊆ Cb(R) in conjunction with Assump-
tion (3.1) we get the following result.

Lemma 5.3. The map Qr is of C2-class and, with z = (u, v), w, θ ∈ H, it
satis�es

Q′r(z)w = (ϕ · h′(u)w1, ϕ · [h′′(u)(v, w1) + h′(u)w2]),

Q′′r (z)(w, θ) =
(
ϕ · h′′(u)(w1, θ1), ϕ · [h′′′(u)(v, w1, θ1)

+h′′(u)(w1, θ2) + h′′(u)(w2, θ1)]
)
.

In particular, for all (u, v) ∈ H and w ∈ H, we have

Q′r(u, v)(0, w) = (0, ϕ · h′(u)w),(5.4)

Q′′r (u, v)
(
(0, w), (0, w)

)
= 0(5.5)

Moreover, Q′r(z)A(z) = AQr(z) +Lr(z), z ∈ H, where, with B being the map

de�ned in (4.2), Lr : H → H is de�ned by

Lr(z) =
(
0, ϕBu(v, v)− ϕBu(ux, ux)− ϕxx · h(u) + 2ϕx · h′(u)ux

)
.

De�ne now the following two auxiliary functions F̃
r,k

= (0, Φ̃r,k) : [0, T ] ×
H 3 (t, z) 7→ Q′r(z)

(
Fr,kt (z)

)
+ Lr(z) ∈ H and G̃

r,k
= (0, Γ̃r,k) : [0, T ] × H 3
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(t, z) 7→ Q′r(z) ◦G
r,k
t (z) ∈ T2(Hµ,H). In particular, if r > t and |x| < r − t,

then

Φ̃r,kt (z) = h′(u)(Fr,kt )2(z) +Bu(v, v)−Bu(ux, ux),(5.6)

Γ̃r,kt (z) = h′(u)(Γr,kt (z)).(5.7)

This leads to the following result that rigorously expresses the fact that F̃
r,k
,

resp. G̃
r,k

is the push forward by Q of Fr,k, resp. Gr,k, provided |x| < r − t.

Proposition 5.1. If r > t, then on (−(r − t), r − t),

F̃
r,k

t (z) = Fr,kt (Qr(z)), G̃
r,k

t (z) = Gr,k
t (Qr(z)).(5.8)

Proof of Proposition 5.1� We begin with the second identity. In view of
(5.4) it is enough to consider the second coordinates. By the invariance property
of the vector �eld Y , see (5.2) and identities (5.4) and (5.7) we have,

Γ̃r,kt (z) = h′(u) ◦ Γr,kt (z) = h′(u) ◦ Yu(v, ux) = Yh(u)(h
′(v), h′(ux))

= Yh(u)(h
′(v), [h(u)]x)) = Yh(u)(Qr(z)) = Γr,kt (Qr(z)),

what proves the �rst part (5.8). To prove the second we argue analogously but
using (4.4) instead of (5.2) we have

Φ̃r,kt (z) = h′(u)Φr,kt (z) +Bu(v, v)−Bu(ux, ux)

= h′(u)Au(v, v)− h′(u)A(ux, ux) +Bu(v, v)−Bu(ux, ux)

= h′(u)Au(v, v) +Bu(v, v)−
[
h′(u)Au(ux, ux) +Bu(ux, ux)

]
= Ah(u)(h

′(u)v, h′(u)v)−Ah(u)(h
′(u)ux, h

′(u)ux)

= Ah(u)(h
′(u)v, h′(u)v)−Ah(u)(h ◦ u)x, (h ◦ u)x) = Γr,k(t, Qr(z)).

Let us also observe that it follows from Lemma 5.3 that the assumptions of
Lemma 3.1 are satis�ed with the linear operator B being equal to A and the
trace term equal to 0. Thus we have the following fundamental result in which
the process z̃r,k is de�ned by the following formuala

z̃r,k = Qr ◦ zr,k.
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Corollary 5.2. Let zr,k be the solution to (5.3) as in Corollary 5.1. Then for

all t ∈ [0, T ], P-a.s.,
(5.9)

z̃r,k(t) = StQr(ξr) +

∫ t

0

St−sF̃
r,k

s (zr,k(s)) ds+

∫ t

0

St−sG̃
r,k

s (zr,k(s)) dW (s).

5.2. Approximate solutions stay on the manifold

Let zr,k = (ur,k, vr,k) be the solution to problem (5.3) and let us de�ne, for
each k ∈ N, the following four functions from Ω to [0,∞].

τ1
k = inf {t ∈ [0, T ] : |zr,k(t)|Hr−t > k},
τ2
k = inf {t ∈ [0, T ] : |z̃r,k(t)|Hr−t > k},
τ3
k = inf {t ∈ [0, T ] : ∃x ∈ [−(r − t), r − t] : ur,k(t, x) /∈ O},
τk = τ1

k ∧ τ2
k ∧ τ3

k .

Lemma 5.4. Each of the functions τ jk , j = 1, 2, 3, j ∈ N, is a stopping time.

Proof � The process zr,k is continuous Hr−t-valued and so the process
[0, T ] 3 t 7→ |zr,k(t)|Hr−t ∈ R− is also continuous. Since τ1

k is the �rst exit time
of the latter from the closed set [0, k] and the �ltration F is right-continuous,
by Proposition 2.1.6 in [11], we infer that it is a stopping time. The same
argument applies to τ2

k .
Finally, let us observe that since ur,k is a jointly continuous process in (t, x),

so τ3
k is equal to the �rst exit time of the continuous F-adapted process B from

the closed set {0}, where

B(t) = inf{dist(ur,k(t, x),Rd \O) : |x| ≤ r − t}, t ∈ [0, T ].

For each k ∈ N we de�ne an auxiliary process ak by

ak(t) = Stξr +

∫ t

0

St−s1[0,τk)(s)F
r,k
s (zr,k(s)) ds

+

∫ t

0

St−s1[0,τk)(s)G
r,k
s (zr,k(s)) dW (s), t ∈ [0, T ].

Similarly, by replacing resp. ξr, Fr,k and G by resp. Qr(ξr), F̃
r,k

and G̃
r,k

we
de�ne another auxiliary process ãk.
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Proposition 5.2. The process ak, ãk, zr,k and z̃r,k coincide on [0, τk) almost

surely. In particular, ur,k(t, x) ∈M for |x| ≤ r− t and t ∈ [0, τk] almost surely.

Consequently, τk = τ1
k = τ2

k ≤ τ3
k .

Proof � As in [19], since (St) is a C0-group and so St−s = St ◦ S−s, the
convolution integrals can be simply transformed into Itô integrals. Hence, by
equalities (5.9) and (5.3) we infer that ak = zr,k and ãk = z̃r,k on [0, τk). Now
by Proposition 5.1 we infer that for all s ∈ [0, T ], x ∈ [−(r − s), r − s], P-a.s.

1[0,τk)(s)[F̃
r,k

s (zr,k(s))](x) = 1[0,τk)(s)[F
r,k
s (z̃r,k(s))](x)

1[0,τk)(s)[G̃
r,k

s (zr,k(s))e](x) = 1[0,τk)(s)[G
r,k
s (z̃r,k(s))e](x), e ∈ Hµ.

Therefore, if p(t) = |ak(t) − ãk(t)|2Hr−t , t ∈ [0, T ], then the stopped (at τk)
process s 7→ p(s ∧ τk), s ∈ [0, T ], is continuous and uniformly bounded. Note
that since ξr = Qr(ξr) on (−r, r), p(0) = 0. Moreover, by Proposition 3.1 and
Lemma 5.2, we can �nd a continuous local martingale I with I(0) = 0 such
that for all k ∈ N,

p(t ∧ τk) ≤ 2

∫ t

0

p(s ∧ τk) ds+ 2C

∫ t

0

1[0,τk)(s)|zr,k(s)− z̃r,k(s)|2Hr−s ds

+ I(t ∧ τk) ≤ 2(C + 1)

∫ t

0

p(s ∧ τk) ds+ I(t ∧ τk), t ∈ [0, T ].

Let (σj)j∈N be a sequence of stopping times that localizes I. Then for all
j, k ∈ N

p(t ∧ τk ∧ σj) ≤ 2(C + 1)

∫ t

0

p(s ∧ τk ∧ σj) ds+ I(t ∧ τk ∧ σj)

and so by taking the expectation and then applying the the Gronwall lemma,
we infer that p = 0 on [0, τk∧σj ] almost surely. By taking j →∞ limit we arrive
at a conclusion that p = 0 on [0, τk] almost surely. In other words, ak = ãk

on [0, τk] P-a.s. and hence P-a.s. zk = z̃k on [0, τk] as well. Consequently,
P-a.s. ur,k(t, x) ∈ O and ur,k(t, x) = h(ur,k(t, x)) for |x| ≤ r − t and t ∈ [0, τk].
Hence, by Corollary 4.1, P-a.s. ur,k(t, x) ∈ M for |x| ≤ r − t and t ∈ [0, τk].
Consequently, τk ≤ τ3

k and so τk = τ1
k ∧ τ2

k . Finally, since p = 0 on [0, τk] we
infer that τ1

k = τ2
k .
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5.3. The Approximate solutions extend each other

Proposition 5.3. Let k ∈ N. Then zr,k+1(t, x, ω) = zr,k(t, x, ω) on |x| ≤ r− t,
t ∈ [0, τk(ω)], and τk(ω) ≤ τk+1(ω) almost surely.

Proof � De�ne now a process p by p(t) = |zr,k+1(t)−zr,k(t)|2H1(r−t)⊕L2(r−t),
t ∈ [0, T ] and apply Proposition 3.1. Since p(0) = 0 we can �nd continuous
local martingale I satisfying I(0) = 0 such that for all t ∈ [0, T ], P-a.s.

p(t) ≤
∫ t

0

2p(s) ds+

∫ t

0

|1[0,τk+1)Φr(zr,k+1)− 1[0,τk)(s)Φr(zr,k)|2L2(r−s) ds

+

∫ t

0

|1[0,τk+1)Γr(zr,k+1)− 1[0,τk)Γr(zr,k)|2T2(Hµ,L2(r−s)) ds+ I(t).

By the localization technique alreaday used in the proof of Proposition 5.2 we
infer that p = 0 on [0, τk+1 ∧ τk]. Hence by the de�nition of τk, τk ≤ τk+1.
Indeed, if |ξr|Hr > k + 1 then τk+1 = τk = 0 and if if k < |ξr|Hr ≤ k + 1

then τk+1 > 0 and τk = 0. Thus, one can assume that |ξr|Hr ≤ k. If τk+1

were smaller than τk then by the just proved property we would have zr,k(t) =

zr,k+1(t) for t ∈ [0, τk+1]. Hence |zr,k(0)|Hr ≤ k and |zr,k(τk+1)|Hr−τk+1
≥ k+1

and therefore we can �nd t̄ ∈ [0, τk+1) such that |zr,k(t̄)|Hr−t̄ = k + 1
2 . This

implies that τk ≤ t̄ and this contradicts the assumption that τk+1 < τk. The
proof is complete.

The stopping times (τk) are non-decreasing by Proposition 5.3, and so we can
denote by τ the limit of (τk). Moreover, we can de�ne a process z̃r(t, x),
t ∈ [0, τ), |x| ≤ r − t by z̃r(t, x, ω) = zr,k(t, x, ω) provided k is so large that
τk(ω) = t. Denote z̃r(t, x) = (ũr(t, x), ṽr(t, x)), |x| ≤ r− t. Note that z̃r(t, ·) ∈
Hr−t and therefore, the following is a correct de�nition of an H-valued process:

(5.10) zr(t) =
(
E2
r−tũr(t), E

1
r−tṽr(t)

)
, t ∈ [0, τ).

In the following two subsections we will show that τ = T P-a.s. and then
that the process z̃r =

(
z̃r(t)

)
t∈[0,T )

is a solution to problem (3.16) with initial
data ξr. Next, if T < r1 < r2, then ξr1 = ξr2 on [−r1, r1] and so by the
uniqueness part of Theorem 3.2 (or rather by the same proof) it follows that
z̃r1(t, x) = z̃r2(t, x) for t ∈ [0, T ] and |x| ≤ r1 − t. In this way can de�ne a
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process z̃ = (z̃(t))t∈[0,T ] by z̃(t, x, ω) = z̃r(t, x, ω) provided r is so large that
r > |x| + t. In the subsection 5.5 we will show that z̃ satis�es the condition
(viii), in particular equality (3.16) in Remark 3.3.

5.4. No explosion for approximate solutions

Proposition 5.4. τ = T almost surely.

Proof � We �rst notice that due to the Chojnowska-Michalik Theorem,
see [6] or Theorem 12 in [25], we have, for t ∈ [0, T ],
(5.11)

zr,k(t) = ξr +

∫ t

0

Gzr,k(s) ds+

∫ t

0

Fr,ks (zr,k(s)) ds+

∫ t

0

Gr,k
s (zr,k(s)) dW (s).

In particular, with the integral converging in H1(R), we have

ur,k(t) = E2
r (u0) +

∫ t

0

vr,k(s) ds, t ∈ [0, T ].

Hence, as by the Sobolev embedding Theorem H1(R) ↪→ Cb(R), we infer that
∂tur,k(t, x) = vr,k(t, x) for all t ∈ [0, T ] and x ∈ R, almost surely.

Next we de�ne, for t ≥ 0, l(t) = |ak(t)|2H0
r−t

, q(t) = log(1 + |ak(t)|2Hr−t) and
ϕ(t) = Aur,k(t)(vr,k(t), vr,k(t))−Aur,k(t)(∂xur,k(t), ∂xur,k(t)).

By applying Proposition 3.1 and Lemma 5.2 we can �nd continuous local
martingales J0, J1 with J0(0) = J1(0) = 0 such that for all t ∈ [0, T ], almost
surely,

l(t) ≤ l(0) +

∫ t

0

l(s) ds+

∫ t

0

1[0,τk](s)〈vr,k(s), ϕ(s)〉L2(Br−s) ds

+

∫ t

0

1[0,τk](s)‖Gr,k
s (zr,k(s))‖2T2(Hµ,H1(Br−s)⊕L2(Br−s))

ds+ J0(t),(5.12)

q(t) ≤ q(0) +

∫ t

0

|ak(s)|2Hr−s
1 + |ak(s)|2Hr−s

ds+

∫ t

0

1[0,τk](s)
〈vr,k(s), ϕ(s)〉L2(Br−s)

1 + |ak(s)|2Hr−s
ds

+

∫ t

0

1[0,τk](s)
〈∂xvr,k(s), ∂x[ϕ(s)]〉L2(Br−s)

1 + |ak(s)|2Hr−s
ds(5.13)

+

∫ t

0

1[0,τk](s)
‖Gr,k

s (zr,k(s))‖2T2(Hµ,H)

1 + |ak(s)|2Hr−s
ds+ J1(t).
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Now, by Proposition 5.2, if |x| ≤ r−s and s ≤ τk(ω), then ur,k(s, x, ω) ∈M
and so ur,k(s, x, ω) ∈ M and ∂tur,k(s, x, ω) = vr,k(s, x, ω) ∈ Tur,k(s,x,ω)M .
Hence, by Proposition 4.2, almost surely on |x| ≤ r − s and s ≤ τk(ω),

Aur,k(s,x)(vr,k(s, x, ω), vr,k(s, x, ω)) = Aur,k(s,x)(vr,k(s, x), vr,k(s, x)),

Aur,k(s,x)(∂xur,k(s, x), ∂xur,k(s, x)) = Aur,k(s,x)(∂xur,k(s, x), ∂xur,k(s, x)).

Finally, since vr,k ∈ Tur,kM and Aur,k(s,x)(∂xur,k(s, x), ∂xur,k(s, x)) ∈ Nur,kM ,
we infer that the integrands in the second integrals in (5.12) and (5.13) is equal
to zero.

Also, by Lemma 5.2, for all s ≥ 0,

1[0,τk)(s)‖Gr,k
s (zr,k(s))‖2T2(Hµ,H0

r−s)
≤ Cr1[0,τk)(s)(1 + l(s))

1[0,τk)(s)‖Gr,k
s (zr,k(s))‖2T2(Hµ,H) ≤ Cr1[0,τk)(s)(1 + l(s))(1 + |ak(s)|2Hr−s).

Therefore, inequality (5.12) becomes

l(t) ≤ l(0) + Cr

∫ t

0

(1 + l(s)) ds+ J0(t), t ≥ 0.

In the same way as in subsection 5.2 by employing the localization argument,
we can prove that for each j ∈ N there exists a constant Kr,j such that with
Bj =

{
ω ∈ Ω : |ξr(ω)|Hr ≤ j

}
, one has

(5.14) E 1Bj [1 + l(t ∧ τk)] ≤ Kr,j , t ∈ [0, T ], j ∈ N.

In order to deal with the third integral in (5.13) let us denote its integrand
by ζ(s). By applying the Gagliardo-Nirenberg inequalities, see e.g. [13], we can
show that |ζ(s)| ≤ C1[0,τk)(s)(1 + l(s)), s ≥ 0. Hence inequality (5.13) turns
into

q(t) ≤ 1 + q(0) + Cr

∫ t

0

[1 + l(s)] ds+ J1(t), t ≥ 0.

As in the proof of inequality (5.14), by employing the localization argument
and using (5.14), we can prove that for each j ∈ N there exists a constant Cr,j
such that

(5.15) E 1Bjq(t ∧ τk) ≤ Cr,j , t ∈ [0, T ], j ∈ N.
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Let us now �x t ∈ [0, T ). Then, since 1{τk≤t}|ak(τk)|Hr−τk ≥ k1{τk≤t}, we
infer that

(5.16) log(1 + k2)P ({τk ≤ t} ∩Bj) ≤ E 1Bjq(t ∧ τk) ≤ Cr,j .

Since τk ↗ τ as k → ∞, from (5.16) we infer that for all t ∈ [0, T ), j ∈ N,
P ({τ ≤ t} ∩ Bj) = 0 what in turn implies that τ = T almost surely. This
completes the proof.

5.5. Proof of the existence part of Theorem 3.2

This proof is continuations of our argument from the end of subsection 5.3.
Let us �x R, T > 0 and r > T+R. Since by (5.11), for t ∈ [0, T ], H0, zr,k(t∧

τk) = ξr+
∫ t∧τk

0
Gzr,k(s) ds+

∫ t∧τk
0

Frs(zr,k(s)) ds+
∫ t∧τk

0
Gr
s(zr,k(s)) dW (s). Re-

stricting to the interval (−R,R) and applying the natural projection fromH0 to
H0
R the last equality becomes z̃r(t∧τk) = ξr+

∫ t∧τk
0

Gz̃r(s) ds+
∫ t∧τk

0
Frs(z̃r(s)) ds+∫ t∧τk

0
Gr
s(z̃r(s)) dW (s), in H0

R . Since τk ↗ T , we infer that in the H0
R sense,

for all t ∈ [0, T ),

(5.17) z̃r(t) = ξr +

∫ t

0

Gz̃r(s) ds+

∫ t

0

Frs(z̃r(s)) ds +

∫ t

0

Gr
s(z̃r(s)) dW (s).

In particular, denoting z̃r = (ũr, ṽr) and ξr = (ur0, v
r
0), we have in H1(−R,R),

ũr(t) = ur0 +
∫ t

0
ṽr(s) ds. Therefore, for t ∈ [0, T ], in the L2(−R,R) sense,

ṽr(t) = vr0 +
∫ t

0

[
∂xxũr(s) +Aũr(s)(ṽr(s), ṽr(s))−Aũr(s)(∂xũr(s), ∂xũr(s))

]
ds

+
∫ t

0
Yũr(s)(ṽr(s), ∂xũr(s)) dW (s). In the formula above, we can already put in

A because ũr(t, x) = ur,k(t, x) ∈M for |x| ≤ r−t and t ∈ [0, T ] by Propositions
5.2 and 5.4. Finally, we notice that in view of the de�nition of the process z,
z(t) = zr(t) on (−R,R) for t ∈ [0, T ]. Therefore, from the last two equalities
we infer that the process z = (u, v) satis�es the condition (vii) in De�nition
3.2. This concludes the proof of the existence part of Theorem 3.2. �

5.6. Proof of the uniqueness of Theorem 3.2

Let us �x R > T > 0 and consider processes u and ū satisfying the condi-
tions (•1)-(•6) listed in Theorem 3.2. De�ne an H-valued continuous processes
Z = (uR, vR), Z̄ = (ūR, v̄R) by formula Z(t, ω) :=

(
E2
Ru(t, ω), E1

R∂tu(t, ω)
)
, t ∈
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[0, T ] and analogously Z̄. For k ∈ N let us de�ne a stopping time σk := inf {t ∈
[0, T ] : max{|Z(t)|HR−t , |Z̄(t)|HR−t} ≥ k} and an H-valued continuous process
β(t) = St(Z(0))+

∫ t
0
St−s1[0,σk)(s)F

r,k
s (Z(s)) ds+

∫ t
0
St−s1[0,σk)(s)G

r,k
s (Z(s)) ds,

t ∈ [0, T ]. Then by Remark 3.3 the process uR satis�es the equality (3.15)
with v0 = vR(0), f(s) = 1[0,σk)(s)F

r,k
s (Z(s)) and g(s) = Gr,ks (Z(s)), for

s ∈ [0, T ]. By the de�ntions of σk, Fr,k and Gr,k we infer that for s ∈ [0, T ],
g(s) = 1[0,σk)(s)Yu(s)(∂su(s), ∂xu(s)) and f(s) = 1[0,σk)(s)Au(s)(∂su(s), ∂su(s))

− Au(s)(∂xU(s), ∂xU(s)). Hence, the process U(t) := u(t) − uR(t), solves the
following homogenous deterministic wave equation

(5.18) ∂tU(t) = ut(0)− vR(0) +

∫ t

0

∂xxU(s) ds, t ∈ [0, σk].

Note that ut(0, x)−vR(0, x) = 0 for all x ∈ [−R,R]. Therefore, by the classical
uniqueness result for deterministic wave equations (e.g. Chapter II, section 6
in [28]) we infer that U(t, x, ω) = 0 for |x| ≤ R − t, t ≤ σk(ω) almost surely.
The same argument is valid for the process ū and we can denote all object by
addition of ,̄ e.g. β̄

If we de�ne q(t) = |β(t) − β̄(t)|2HR−t , by applying Proposition 3.1 we can
�nd a continuous local martingale I is satisfying I(0) = 0 such that

q(t ∧ σk) ≤
∫ t∧σk

0

[2q(s) + |FR,ks (Z(s))− FR,ks (Z̄(s))|2H] ds+ I(t ∧ σk)

+

∫ t∧σk

0

‖GR,k
s (Z(s))−GR,k

s (Z̄(s))‖2T2(Hµ,H) ds, t ∈ [0, T ].

Lemma 5.2 implies that q(t ∧ σk) ≤
∫ t∧σk

0
Cq(s) ds + I(t ∧ σk). By the lo-

calization argument we get E q(t ∧ σk) ≤
∫ t

0
CE q(s ∧ σk) ds, t ∈ [0, T ] and

so by the Gronwall Lemma we infer that q = 0 on [0, σk). Hence, since
q(t) ≥ 1[0,σk)|u(t) − ū(t)|2L2(−(R−t),R−t). Passing with k to in�nity, we obtain
that u(t, x, ω) = ū(t, x, ω) for |x| ≤ R− t, t ∈ [0, T ] as claimed. �

5.7. Equivalence of two de�nitions - Proof of Theorem 3.1

Assume that u is an extrinsic solution. Let X be a vector �eld onM , R > 0

and O = (−R,R). Then, by (2.4) we have, in the H1(O;Rd) sense,

(5.19) X(u(t)) = X(u0) +

∫ t

0

(
∇∂su(s)X +Au(s)(X(u(s)), ∂su(s))

)
ds, t ≥ 0.
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Hence, by applying the Itô Lemma, see e.g. Theorem 4.17 in [9], to equalities
(5.19)-(3.7) and a function ϕ : H1(O) × L2(O) 3 (u, v) 7→ 〈u, v〉L2(O) ∈ R we
infer that

〈∂tu(t), X(u(t))〉 = 〈v0, X(u0)〉+

∫ t

0

〈X(u(s)), Yu(s)(∂su(s), ∂xu(s)) dW (s)〉

+

∫ t

0

{
〈X(u(s)), ∂xxu(s)−Au(s)(∂xu(s), ∂xu(s))(5.20)

+ Au(s)(∂su(s), ∂su(s))〉+ 〈∂su(s),∇∂su(s)X〉
}
ds, t ≥ 0.

SinceAp(·, ·) ⊥ TpM for all p ∈M , we infer that 〈X(u(s)), Au(s)(∂su(s), ∂su(s))〉
= 0 for all s ≥ 0. Hence, by applying identity (2.5) to (5.20) we �nd that u
satis�es the equality (3.5), i.e. that u is an intrinsic solution.

To prove the converse implication let us assume u is an intrinsic solution.
Let Z1, . . . , Zk be a a �nite system of vector �elds on M such that (2.7) holds
true. Recall that the Rd components of Zi are being denoted by Z1

i , · · · , Zni .
From equation (3.5) applied to vector �elds Xj

i = Zji Zi, i ≤ k, j ≤ n,
multiplied by vector ej and summed over j, by applying (2.7) we obtain

∂tu(t) = v0 +

∫ t

0

Dx∂xu(s) ds+

∫ t

0

n∑
j=1

k∑
i=1

〈∂su(s),∇∂su(s)(Z
j
i Zi)〉 ej ds

+

∫ t

0

Yu(s)(∂su(s), ∂xu(s)) dW (s).(5.21)

But, by (2.8),
∑n
j=1

∑k
i=1〈∂su(s),∇∂su(s)(Z

j
i Zi)〉 ej = Au(s)(∂su(s), ∂su(s))

and hence, from (5.21) we infer that u satis�es the equality (3.7), i.e. that u is
an extrinsic solution to problem (3.1) with initial data (3.4).
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